In vitro bioactivity of implantable Ti materials coated with PVAc membrane layer

A novel, simple and efficient approach for designing a 3-D structure of poly(vinyl acetate) (PVAc) fibers layer coated on chemically treated Ti coupons by means of air jet spinning (AJS) approach has been developed. The effects of the PVAc AJS membrane mats on apatite formation were evaluated in vit...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor Principal: Abdal-Hay, A
Formato: Artículos
Publicado: ELSEVIER 2018
Materias:
Acceso en línea:https://www.scopus.com/inward/record.uri?eid=2-s2.0-84899867653&doi=10.1016%2fj.matlet.2014.04.048&partnerID=40&md5=94a4dd92c5e4e151a82ca454e34a2abd
http://dspace.ucuenca.edu.ec/handle/123456789/29042
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:A novel, simple and efficient approach for designing a 3-D structure of poly(vinyl acetate) (PVAc) fibers layer coated on chemically treated Ti coupons by means of air jet spinning (AJS) approach has been developed. The effects of the PVAc AJS membrane mats on apatite formation were evaluated in vitro with immersion in simulated physiological Hank's balanced salt solution. The MC3T3-E1 pre-osteoblast cell-line has been utilized for measuring the bone cell response. The results suggest that the AJS produces a distinct porous layer of 3-D interconnected fibers on Ti with strong adhesion which offers a suitable surface structure for cell attachment. A significant amount of apatite-like formation and cell spread with strong local adhesion were identified on the PVAc fibers compared to the neat samples. © 2014 Elsevier B.V.