a simple mapping methodology of gait biomechanics for walking control of a biped robot

This research presents a simple mapping methodology for gait biomechanics of a human being into joint angles of a 10 degrees of freedom (DOF) biped robot. The joint angles are mapped by considering the zero moment point (ZMP) criterion. The walking control of the robot is performed by an optimal sta...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores Principales: Minchala Avila, Luis Ismael, Astudillo Salinas, Darwin Fabian, Vazquez Rodas, Andres Marcelo
Formato: info:eu-repo/semantics/ARTÍCULO DE CONFERENCIA
Publicado: Institute of Electrical and Electronics Engineers Inc. 2019
Materias:
Acceso en línea:http://dspace.ucuenca.edu.ec/handle/123456789/31930
https://www.scopus.com/record/display.uri?eid=2-s2.0-85058030370&doi=10.1109%2fINTERCON.2018.8526395&origin=inward&txGid=ef910d36df5d1dcb6806c4980521a139
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:This research presents a simple mapping methodology for gait biomechanics of a human being into joint angles of a 10 degrees of freedom (DOF) biped robot. The joint angles are mapped by considering the zero moment point (ZMP) criterion. The walking control of the robot is performed by an optimal state feedback controller. The walking trajectories are planned in the sagittal plane, and they are generated in compliance with the ZMP of the robot - keeping the robot within the support polygon - by dividing the control process in two stages: unique support and double support. A linear inverted pendulum model (LIPM) is used as an approximate single mass model of the robot during gait. Results of this research include simulation-based analysis and real-time implementation results, which show accurate robot movements with limited robustness under slippery platforms. © 2018 IEEE.