a simple mapping methodology of gait biomechanics for walking control of a biped robot

This research presents a simple mapping methodology for gait biomechanics of a human being into joint angles of a 10 degrees of freedom (DOF) biped robot. The joint angles are mapped by considering the zero moment point (ZMP) criterion. The walking control of the robot is performed by an optimal sta...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores Principales: Minchala Avila, Luis Ismael, Astudillo Salinas, Darwin Fabian, Vazquez Rodas, Andres Marcelo
Formato: info:eu-repo/semantics/ARTÍCULO DE CONFERENCIA
Publicado: Institute of Electrical and Electronics Engineers Inc. 2019
Materias:
Acceso en línea:http://dspace.ucuenca.edu.ec/handle/123456789/31930
https://www.scopus.com/record/display.uri?eid=2-s2.0-85058030370&doi=10.1109%2fINTERCON.2018.8526395&origin=inward&txGid=ef910d36df5d1dcb6806c4980521a139
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:localhost:123456789-31930
recordtype dspace
spelling oai:localhost:123456789-319302019-03-12T09:13:39Z a simple mapping methodology of gait biomechanics for walking control of a biped robot Minchala Avila, Luis Ismael Astudillo Salinas, Darwin Fabian Vazquez Rodas, Andres Marcelo Astudillo Salinas, Darwin Fabian Biped control gait robot This research presents a simple mapping methodology for gait biomechanics of a human being into joint angles of a 10 degrees of freedom (DOF) biped robot. The joint angles are mapped by considering the zero moment point (ZMP) criterion. The walking control of the robot is performed by an optimal state feedback controller. The walking trajectories are planned in the sagittal plane, and they are generated in compliance with the ZMP of the robot - keeping the robot within the support polygon - by dividing the control process in two stages: unique support and double support. A linear inverted pendulum model (LIPM) is used as an approximate single mass model of the robot during gait. Results of this research include simulation-based analysis and real-time implementation results, which show accurate robot movements with limited robustness under slippery platforms. © 2018 IEEE. This research presents a simple mapping methodology for gait biomechanics of a human being into joint angles of a 10 degrees of freedom (DOF) biped robot. The joint angles are mapped by considering the zero moment point (ZMP) criterion. The walking control of the robot is performed by an optimal state feedback controller. The walking trajectories are planned in the sagittal plane, and they are generated in compliance with the ZMP of the robot - keeping the robot within the support polygon - by dividing the control process in two stages: unique support and double support. A linear inverted pendulum model (LIPM) is used as an approximate single mass model of the robot during gait. Results of this research include simulation-based analysis and real-time implementation results, which show accurate robot movements with limited robustness under slippery platforms. © 2018 IEEE. Lima 2019-02-06T16:54:54Z 2019-02-06T16:54:54Z 2018 info:eu-repo/semantics/ARTÍCULO DE CONFERENCIA 978-153865490-3 0000-0000 http://dspace.ucuenca.edu.ec/handle/123456789/31930 https://www.scopus.com/record/display.uri?eid=2-s2.0-85058030370&doi=10.1109%2fINTERCON.2018.8526395&origin=inward&txGid=ef910d36df5d1dcb6806c4980521a139 10.1109/INTERCON.2018.8526395 es_ES instname:Universidad de Cuenca reponame:Repositorio Digital de la Universidad de Cuenca info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/3.0/ec/ Institute of Electrical and Electronics Engineers Inc. Proceedings of the 2018 IEEE 25th International Conference on Electronics, Electrical Engineering and Computing, INTERCON 2018 info:eu-repo/date/embargoEnd/2050-12-19 info:eu-repo/semantics/Versión publicada
institution UCUENCA
collection Repositorio UCUENCA
universidades UCUENCA
language
format info:eu-repo/semantics/ARTÍCULO DE CONFERENCIA
topic Biped
control
gait
robot
spellingShingle Biped
control
gait
robot
Minchala Avila, Luis Ismael
Astudillo Salinas, Darwin Fabian
Vazquez Rodas, Andres Marcelo
a simple mapping methodology of gait biomechanics for walking control of a biped robot
description This research presents a simple mapping methodology for gait biomechanics of a human being into joint angles of a 10 degrees of freedom (DOF) biped robot. The joint angles are mapped by considering the zero moment point (ZMP) criterion. The walking control of the robot is performed by an optimal state feedback controller. The walking trajectories are planned in the sagittal plane, and they are generated in compliance with the ZMP of the robot - keeping the robot within the support polygon - by dividing the control process in two stages: unique support and double support. A linear inverted pendulum model (LIPM) is used as an approximate single mass model of the robot during gait. Results of this research include simulation-based analysis and real-time implementation results, which show accurate robot movements with limited robustness under slippery platforms. © 2018 IEEE.
author2 Astudillo Salinas, Darwin Fabian
author_facet Astudillo Salinas, Darwin Fabian
Minchala Avila, Luis Ismael
Astudillo Salinas, Darwin Fabian
Vazquez Rodas, Andres Marcelo
author Minchala Avila, Luis Ismael
Astudillo Salinas, Darwin Fabian
Vazquez Rodas, Andres Marcelo
author_sort Minchala Avila, Luis Ismael
title a simple mapping methodology of gait biomechanics for walking control of a biped robot
title_short a simple mapping methodology of gait biomechanics for walking control of a biped robot
title_full a simple mapping methodology of gait biomechanics for walking control of a biped robot
title_fullStr a simple mapping methodology of gait biomechanics for walking control of a biped robot
title_full_unstemmed a simple mapping methodology of gait biomechanics for walking control of a biped robot
title_sort simple mapping methodology of gait biomechanics for walking control of a biped robot
publisher Institute of Electrical and Electronics Engineers Inc.
publishDate 2019
url http://dspace.ucuenca.edu.ec/handle/123456789/31930
https://www.scopus.com/record/display.uri?eid=2-s2.0-85058030370&doi=10.1109%2fINTERCON.2018.8526395&origin=inward&txGid=ef910d36df5d1dcb6806c4980521a139
_version_ 1635523741934944256
score 11,871979